《比例》教学设计
在教学工作者实际的教学活动中,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。教学设计应该怎么写才好呢?下面是小编为大家收集的《比例》教学设计,希望能够帮助到大家。
《比例》教学设计1教学基本
内容第76~77页练习十四的第5~9题
教学目的和要求
1.使学生进一步掌握“按比例分配问题”的解题方法。
2.进一步巩固比的知识,沟通比和分数、除法的关系。
3.在解决问题的过程中,进一步体会数学知识间的内在联系,增强思维的深刻性。
教学重点
及难点会正确计算“按比例分配问题”的简单问题。
运用数学知识灵活解决实际问题。
教学方法
及手段使学生在活动中进一步积累解决问题的经验。
学法指导
集体备课
预习教学
环节设计
一、基本练习
1.知识回顾与整理。
前几节课,你学会了哪些知识?
2.完成练习十四第5题。
3.完成练习十四第6题。
4.完成练习十四第7题。
引导思考:当药粉是400克时,水的克数与400克有什么关系?当水是400克时,药粉的克数与400克有什么关系?
二、综合练习
1.完成练习十四第8题
第(3)题要引导学生理解:当黄沙全部用完时,水泥用去黄沙的几分之几?石子用去黄沙的几分之几?
2.完成练习十四第9题
第(1)题先让学生说说面积是24平方厘米的长方形,长和宽分别是多少,再对照条件确定长和宽的比值
。第(2)题引导思考:已知长与宽的比是5:3,要知道长与宽分别是多少,必须先求出什么?
3.一辆客车和一辆货车同时从甲、乙两地相对开出,在离中点20千米的地方相遇,相遇时客车和货车所行路程的比是5﹕3,甲、乙两地相距多少千米?
反馈时,引导学生理解:客车与货车所行路程的差是40千米。
三、拓展练习
出示:
王大伯养了灰兔、白兔、黑兔共150只,已知白兔只数是灰兔只数的5/6,黑兔只数与白兔只数比是4:5,灰兔有多少只?
让学生说说已知哪些条件,已知灰兔、白兔、黑兔共150只,求灰兔有多少只?需要先求出什么?
作
业补充习题
板书设
计
执行
情况
与课
后小
结
《比例》教学设计2教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成( )比例。
(2)单价一定,总价与数量成( )比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成( )比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)
师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】
二、揭示课题、探索新知。
1、小黑板出示例5
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1) 学生自己解答。
(2) 交流解答方法,并说说自己想法。
算式是:12.8÷8×10
=1.6×10
=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)
(也可以先求出用水量的倍数关系再求总价。)
10÷8×12.8
=1.25×12.8
=16(元)
【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】
师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)
(3)小黑板出示以下问题让学生思考和讨论:
1)题目中相关联的两种量是( )和( ) ,说说变化情况。
2)( )一定,( )和( )成( )比例关系。
3)用关系式表示是( )
(4)集体交流、反馈
板书: 水费 用水吨数
12.8元 8吨
?元 10吨
水费:用水吨数 = 每吨水的价钱(一定)
师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。
(5)根据正比例的意义列出比例式(方程):
学生独立完成,教师巡视。
反馈学生解题情况。
8
12.8
10
χ
解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10 或 =
8χ=12.8×10 8χ= 12.8×10
χ=128÷8 χ=128÷8
χ= 16 χ= 16
答:李奶奶家上个月的水费是16元。
【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给 ……此处隐藏12844个字……尺含义理解的基础上,进一步体会比例尺的运用,所以在设计着重体现实用性,设计中采用不同的问题情境,才学生身边的事物说起,引导学生解决身边的数学问题,激发学生学习兴趣。再有是进一步学生加强对比例尺含义的理解,设计中,引导学生自主分析,利用知识迁移,自主尝试列式解决,有扶到放,能有效培养学生解决问题的策略水平,主动探索问题的方法,以及不断积累解决问题的经验。
教学步骤
教师活动学生活动
一、复习旧知
引入新课1、在一幅地图上扬州到南京相距5厘米,实际相距100千米,你能找出这幅地图的比例尺吗?
2、什么叫比例尺?求比例尺时要注意哪些问题?
学生练习,找出图上距离与实际距离,再写出比例尺。
二、理解明确
实践运用
1、出示例7,明确题意
找出明华小学到少年宫距离的线段,说出题目告诉了什么,要求什么。
2、分析比例尺1:8000所表示的意义。
引导分析:比例尺1:8000,说明实际距离是图上距离的8000倍。也可以理解为比例尺1:8000也就是图上距离1厘米表示实际距离80米。
3、尝试列式
根据对1:8000的理解你能尝试列出算式吗?
师:交流算法,说说为什么这样算?(引导学生进一步理解不同算法,为什么会这样列式,关键是要让学生根据对比例尺的意义的理解去解决问题,帮助学生掌握不同算法以及之间的联系。)
4、归纳、选择、
教师允许学生按照自己的思考选择方法进行解答,重点引导学生理解和掌握用列比例式求实际距离的方法。
5、练习
教师引导学生思考:根据比例尺的含义,明华小学到少年宫的图上距离与实际距离的比一定与哪个比相等?你能根据这样的相等关系列出比例式?
学生分析题意,明确已知比例尺,已知图上距离,求实际距离。
学生分析1:8000表示的意义。
学生根据自己的思考自己选择合适的方法进行解答后先小组交流算法,再大组交流。
学生可能出现的方法:
1、5×8000=40000……2、5×80=400……
3、5/X=1/8000……
图上距离/实际距离=比例尺,可以用解比例的方法求出实际距离。
学生列式5/X=1/8000并计算。
三、尝试练习
巩固提高1、做“试一试”。
先选择自己合适的方法算出学校到医院的图上距离。再引导学生讨论怎样把医院的位置在图上表示出来。
2、做“练一练”先独立解题,在组织交流
3、做练习十一第4题
引导学生在地图上测两地之间的距离和在地图上如何找比例尺。
3、做练习十一第5题。
引导学生确定合适的比例尺。在解决问题的过程中,进一步体会比例以及比例尺的应用价值。
学生练习
在图中表示医院的位置。
学生练习后交流
四、全课总结
回顾反思1、通过本课的学习,你又掌握了什么新的本领?有哪些收获?
2、你还有什么疑问,或你能给同学提出什么新问题?
五、知识拓展
激发兴趣P51“你知道吗?”
1、收集地图资料,展示给学生观看。
2、介绍国家基本比例尺地图。
学生观看
阅读后适当交流
《比例》教学设计15教学过程:
一、导人新课
教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)
二、新课
1、自学解比例。
(1)学生自学教材35页的解比例。
(2)学生交流解比例的意义。
(3)教师归纳:(出示课件)
我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、教学例2。
出示例2。
(1) 学生读题,理解题目里的条件和问题。
(2) 学生试着解答此题,一名学生演板。
(3) 师生共评。
(4) 归纳用比例解应用题的方法:
A. 设出题目中要求的未知量为x;
B. 根据比例的意义列出比例;
C. 运用比例的基本性质解比例;
D. 检查、写答语。
(5)试一试:完成练习六第8题。
3、自学例3。
(1)学生独立把例3补充完整。
(2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)
教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。
从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。
4、总结解比例的过程。
提问:
(1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)
(2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)
(3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)
5、完成第35页的做一做。
学生独立解答,订正时,让学生说说是怎么做的。
三、巩固练习
做练习六的第7、9、10题。
四、学有余力的学生做第12*、13*题。
傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:
3:8=15:40 40:15=8:3
3:15=8:40 40:8=15:3
如果把3、40作为内项,有下面这些比例式:
15:3=40:8 8:40=3:15
15:40=3:8 8:3=40:15
可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。 学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。